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1 KKT Optimality Condition

1.1 Conditions for Strong Duality

Recall the primal problem:

p∗ =min
x

f0(x),

s.t. fi(x) 6 0, i = 1, . . . , m,

hj(x) = 0, j = 1, . . . , l.

Lagrangian:

L(x,λ,ν) = f0(x) + ∑
i

λi fi(x) + ∑
j

νjhj(x).

Lagrange dual function:

g(λ,ν) = inf
x∈D

L(x,λ,ν).

Dual problem:

q∗ =max
λ,ν

g(λ,ν),

s.t. λ � 0.

Weak Duality: q∗ 6 p∗ that is

g(λ∗,ν∗) 6 f0(x∗).

Thus, q∗ is a non-trivial lower bound of p∗. For example, we can use this property to construct a stopping

condition as

f (xt)− f (x∗) = f (xt)− p∗ 6 f (xt)− q∗ = f (xt)− g(λ∗,ν∗).

Strong Duality: q∗ = p∗.

Q: What condition can justify the strong duality? Is convexity enough?
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Example 1.1. The following example gives us an interesting instance to show the strong duality cannot be

justified by the convex property.

min e−x

s.t. x2/y 6 0,

y > 0.

• p∗ = 1.

• This is a convex problem.

• Lagrange dual function:

g(λ) = inf
(x,y)

{
e−x + λ1x2/y− λ2y

}
= 0(λ1 = λ2 = 0).

• Dual problem is q∗ = maxλ 0 = 0, s.t. λ � 0.

Convexity alone is not enough to guarantee strong duality.

Theorem 1.2. Consider the following convex problem

min
x

f0(x),

s.t. fi(x) 6 0, i = 1, . . . , m,

Ax = b.

If there exists x ∈ int(D), such that Ax = b, fi(x) < 0, i = 1, . . . , m (strictly feasible), then the strong duality

holds.

Proof. See Page 234 of [?]. �

There are many results that establish conditions on the problem, beyond convexity, under which strong

duality holds. These conditions are called constraint qualifications. The above condition is called Slater

conditions.

1.2 Benefit of Strong Duality

Theorem 1.3. Suppose that x∗ and (λ∗,ν∗) are the primal and dual solution of optimization problem of (??), and

strong duality holds. Then we have the following two facts:

• ∑i λ∗i fi(x∗) = 0. That is λ∗i > 0,=⇒ fi(x∗) = 0 or fi(x∗) < 0,=⇒ λ∗i = 0. This is also called “complemen-

tary slackness.”
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• x∗ is the minimizer of L(x,λ∗,ν∗), that is

∇ f0(x∗) + ∑
i

λ∗i ∇ fi(x∗) + ∑
j

ν∗j ∇hj(x∗) = 0.

Proof. Due to the strong duality, then

p∗ = f0(x∗) = q∗ = inf
x∈D

{
f0(x) + ∑

i
λ∗i fi(x) + ∑

j
ν∗j hj(x)

}

6 f0(x∗) + ∑
i

λ∗i fi(x∗) + ∑
j

ν∗j hj(x∗)

6 f0(x∗).

This implies

∑
i

λ∗i fi(x∗) = 0

and x∗ is the minimizer of L(x,λ∗,ν∗). In addition,

∇L(x∗,λ∗,ν∗) = 0 =⇒ ∇ f0(x∗) + ∑
i

λ∗i ∇ fi(x∗) + ∑
j

ν∗j ∇hj(x∗) = 0.

�

Under strong duality, given a dual solution (λ∗,ν∗) any primal solution x∗ solves

min
x

f0(x) + ∑
i

λ∗i fi(x) + ∑
j

ν∗j hj(x).

This means that we only need to solve an unconstrained problem we have familiar with them.

Example 1.4. Minimization a separable function subject to an equality constraint.

min f0(x) =
n

∑
i=1

fi(xi),

s.t. a>x = b.

g(ν) = inf
x

{
n

∑
i=1

fi(xi) + ν(a>x− b)

}

= inf
x

{
n

∑
i=1

( fi(xi) + νaixi)− νb

}

= −
n

∑
i=1

sup
xi

{(−νai)xi − fi(xi)} − νb

= −
n

∑
i=1

f ∗i (−νai)− νb.
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Then the dual problem is a one-dimensional optimization problem with respect to ν:

max −
n

∑
i=1

f ∗i (−νai)− νb.

Suppose that we can obtain ν∗, then solve

min
xi
{( fi(xi)− aiν

∗ai)}, i = 1, . . . , n.

Then solve equation f ′(xi) = −ν∗ai to obtain x∗i .

1.3 Karush-Kuhn-Tucker Conditions

• First appeared in publication by Kuhn and Tucker 1951.

• Later people found out that Karush had the condition in his unpublished master’s thesis of 1939.

• Finally, it is called the Karush-Kuhn-Tucker conditions.

Theorem 1.5. (KKT Optimality Conditions) Let x∗ and (λ∗,ν∗) be the primal and dual optimal points of optimization

problem of (??) with zero dual gap, then the following KKT conditions hold:

∇ f0(x∗) + ∑
i

λ∗i ∇ fi(x∗) + ∑
j

ν∗j ∇hj(x∗) = 0 (stationary point), (1)

fi(x∗) 6 0, (primal feasible) (2)

hj(x∗) = 0, (primal feasible) (3)

λ∗i fi(x∗) = 0, (complementary slackness) (4)

λi > 0, (dual feasible) (5)

where i = 1, . . . , m and j = 1, . . . , l.

Proof. Combing the primal and dual feasible conditions and results of Theorem 1.3, we can justify the KKT

optimality conditions. �

Next, let us show some insightful examples

Example 1.6. For the unconstrained optimization, KKT optmality conditions say: ∇ f (x∗) = 0.

Example 1.7. Let us consider the following general convex optimization with linear equality constrains.

min
x

f (x), (6)

s.t. Ax = b. (7)
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Based on the KKT optimality conditions, we have

 Ax∗ = b,

∇ f (x∗) + A>λ∗ = 0.

Recall that we have obtain these conditions by the general optimality conditions

〈∇ f (x∗), y− x〉 > 0

in the previous example.

5


	KKT Optimality Condition
	Conditions for Strong Duality
	Benefit of Strong Duality
	Karush-Kuhn-Tucker Conditions


